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SUMMARY

Existing theories of the accommodation coefficient for the transfer of
energy between a monatomic gas and a solid are re-examined and reconciled
with each other. Particular attention is given to the regime of high
temperatures and energies, which is of present interest in the study of high
speed flight through rarefied gases. A study is also made of other simplfied
models, showing that although the older theories can now be reconciled and
understood in simple qualitative physical terms, these theories share a number

of defects, and there is work yet to be done.
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This paper comprises an examination of existing theories of the
accommodation coefficient for the transfer of energy between a monatomic
gas and a solid. In particular the physical bases and implications of the
theory of Devonshire! are examined and its limitations discussed. The need
for extension of the theory is established, and successive papers of this
series will meke some of the necessary improvements.

1 INTRODUCTION

A solid surface may have a temperature T  differing from that (TS) of

a gas in contact with it. The gas molecules then strike the solid at a
temperature Tg and leave again with some intermediate temperature Té, if a

temperature cen be assigned to the resulting energy-disfribution. The
thermal accommodation coefficient (a) may then be defined:

L.

_ lim g g
of) = oS T o )
g s s g

In free-molecule and slip-flow conditions, the accommodation coefficient
plays a large part in determining the rate of heat transfer from a gas to a
solid. We shall be concerned here with monatomic gases only, so that internal
degrees of freedom will not be considered. Also, to avoid the attribution of
temperature to non-equilibrium energy distributions, a will be teken to mean
the coefficient for the accommodation of average kinetic energy.

2 SHORT REVIEW OF EXISTING THECRIES

The theoretical problem involves the equation of motion for a gas atom
approaching and then departing from a crystal lattice. The three major areas
in which simplifying assumptions are made in order to obtain a viable theory
are thus

(1)  The motion of the gas atom.

(11) The geometrical arrangements of lattice and gas atom and the
interaction forces,

(111) The motion of the solid lattice.

The earliest theory of the accommodation coefficient is that of Bauléz,
who assumed a hard-elastic-sphere or 'billiard ball' interaction between the
gas atom and any lattice atom which it strikes. The lattice atoms were taken
to vibrate about their equilibrium positions as in the Einstein specific heat
model. Any gas atom which after its first encounter is still moving toward
the lattice is assumed to be accommodated completely. This crude classical
(as aistinct from quantum) theory mainly serves to show the importance of the
ratio of the mass m of the impinging gas atom to the mass M of the lattige
atoms. The relevant energy-transfer factor is the familiar 4 oM/(m + M) ,
and the resulting accommodation coefficient is independent of temperature.

A merit of Baulé's theory is that he was able to consider the different
possible geometrical arrangements between the gas and lattice atoms at the
moment of impact: This has proved quite impracticable in the later theories,
and when e lattice is considered at all, the gas atom is assumed always to
approach a ‘target' atom in the surface along a perpendicular to the surface
passing through the target atom centre and to recede along the same line.

A more refined classical theory due to Landau’ appeared in 1935. The
lattice was replaced by a continuum, the gas atom was assumed to move in a

potential V = e-x/a where x is the distance from the equilibrium position of
the free surface, the motion of the gas atom was assumed to be unaffected to

-3 -
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a first order by the motion of the free surface so that for a given speed
of approach the force exerted by the atom on the surface was known as a
function of time, and the energy exchanged with each normal mode (plane
stress wave) of motion of the continuum could be calculated by considering
the emplitude and frequency with which that normal mode moved the free
surface, He obtained

o 2 2 (/2
_ A /BraT k" T (2)
a = ﬁﬂi(\ o

where # = h/2%, h is Planck's constant, T the temperature, k is Boltzmann's
constant and 6 is the Debye temperature. The constant A was given by

Landau as :T’ but on the basis of treating the continuum in one place as a
solid and otherwise as a liquid. Devonshire! amended A to ‘E to correct

this inconsistency. The result is only valid for small a because of the
perturbation method used. Also there exists no possibility of adsorption
on this model because the assumed gas/solid interaction is repulsive at
all distances. The range of validity of the formula is restricted because
at high temperatures o becomes too large while at low temperatures the
quantisation of the normal modes is important.

Devonshire in 1937 produced a quantum theory1 of the accommodation
coefficient, which corrected, superseded or included as special cases, all
the previous theories., The gas atom, incident upon a target atom in the
lattice was assumed to move in a Morse potential

V = D(e”%* . 2¢7KX) (3)

where x is the geparation between the gas atom and the target atom (minus
the equilibrium separation), and D is the "well-depth" or depth of the
minimum of the V(x§ curve below V(). It is, apart from the zero-point
energy, the adsorption energy. The possibility of the gas atom becoming
trapped in the energy well was treated as a separate issue, and Devonshire's
formula for accommodation coefficient refers to the energy exchanged by
those gas atoms only which immediately bounce off the solid surface.
First-order perturbation theory was used to calculate the probability of
energy transfer to any one normal mode of the lattice, and summation over

a Debye distribution of normal modes gave

vm (2-;)3 v2 dv o n (A +A ,)2 E
_%_/' j’ 8x'p m _sinh 2mu sinh 2mu! TR “kT
Vm [¢] 0

vt e dE
exp (%)-1 x’? ¥ (cosh 2»u' - cosh 27‘*1)2 Ap Ap'
eor (u)
with
s YZ&E ¢ g YEEehy) V2D
4 = Ty H U =] Py ; d = y
and ‘ (5)
Mo rCasten)]? @=vE) J
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Here the symbols have their previous significance, v is a normal-mode
frequency, Vo is the Debye maximum frequency and E is the initial kinetic
2
energy of a gas molecule. A misprint of Vo in place of vi
the original peper. The effects of a simple exponential repulsive interaction
may be obtained as the limit of equation (4) as D » O i.e. d » O and the
corresponding accommodation coefficient is

3
v [hy 2
m <}-{> V' dv oo N B

occurs twice in

_z_/‘ \KT fx'p m _sinh musinh' KT o

22 M 2
31 oxp (_11\1) -1y kh (cosh mu' - cosh my)

v
o]

eoe (6)

Devonshire points out that with the approximations um >> 1, E >> hv,
and kT >> hv, formule 6 can be reduced to Landau's expression 2, but only if

the integrand of 6 is small for v > o and then A is found to be g-, not %.

The above approximations are valid at high temperatures except that
unfortunately, the condition on the integrand is only valid at low tempera-
tures, when it becomes so because of quantisation of the lattice vibrations
and because the "duration of collision" between gas atom and lattice becomes
large.

In the course of obteining equation (4), Levonshire assumes that x
times the amplitude of thermal motion of the target atom is small, and that
the interaction energy between the gas atom and the lattice is a function
only of the separation between target and gas atoms. The interaction
potential V is then represented, if #z and u are the coordinates of target
and gas atom respectively, by

V(u,z) = Vv(u,0) - = _a_V_%x‘&Q)_ V)
v(u,0) = D[e'z"“-ze"‘“] . (8)

Because the approximation 7 is linear in 2z, and because z is linear in
the normal coordinates for the crystal vibrations, it followst that in the
first-order perturbation scheme, only one normal mode can change its gquantum
number, and that by only *1. The integration over all normsl modes in 4 is
therefore only justified if the sum of the one-quantum transition probabilities
is much less than one, because the integration assumes complete independence
of the probabilities for each normael mode, whereas in the first-order theory
used, if one normal mode exchanges a phonon, this prevents any other mode
from doing so. The sum of transition probabilities is the same integral as &,
but with the integrand first divided by (hv/kT). It follows that at high
temperatures, or when a becomes large, formula 4 may give an over-estimate
of the accommodation coefficient which should result from first order theory.

This becomes obvious when calculations according to 4 are made; values
of a can be obtained which necessarily imply the exchange of many phonons.

Landau? pointed out that for higher temperatures and heavier gas atoms,

classical mechanics must give & good approximation to the truth. That his
theory is invalid for high temperatures is mainly because he incorrectly
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assumed that his finite integral over normal modes could be approximated
by an infinite one. Recently, Zwanzig5 has also suggested that a classi~
cal approach must be used to handle the large energy-transfers which must
be expected at high temperature. He made a study of a one-dimensional
model for the solid, consisting of discrete masses connected by springs,
with the gas "atom" incident upon the end of the chain and interacting
with the last "solid atom" according to various potentials. Large
accommodation coefficients were derived. Bonch-Bruevich® has complained
that the complexity of the mathematical formulation of the results
obtained in the series of papers by Lennard-Jones, Devonshire, and Strachan
comple tely obscures any physical insight and makes the theory too diffi-
cult to apply. There may be some justification for this, since writers

on problems concerning high speed aviation use! Baulé's theory in any con-
sideration of accommodation coefficient, despite its cbvious naivety.
Later in this paper the qualitative physical features and consequences of
the Devonshire theory will be exhibited clearly.

3 RECONCILIATION OF THE THEORIES

In this section a high-temperature approximation to the theories of
Landau and of Devonshire will be derived and related to the simple Bauld
concept of classical collisions between hard spheres. The factor of two
between Landau and Devonshire persists in this regime and an examination
of simple one-dimensional models reveals that this factor is a measure of
the inadequacy of a continuum model for the representation of the higher-
frequency motions of a lattice. It is also shown that the Devonshire
theory, although correct in the high temperature limit, does not lead in
general to a correct distribution of the exchanged energy among the normal
modes of the crystal,

If in formula 6 the approximations pm >> 1, E >> hv, kT >> hv are
made, which are appropriate to high temperatures or high energies in the
oncoming gas atoms, but no assumption is made as to the magnitude of the
integrand for v > Vo? then (9) is obtained:

v
m
[~
3 n 8y —[ /KT o
© =S¥ 2 @l VW 202 % %%
v K ° 4 sinh“(n m*® v/kE? 29)

cee (9)

Devonshire's repulsive potential is e-2Kx (see equation (8)),
whereas Landau uses e a, so we may put k = 1/2a. Also if Vz is the
speed of approach of the gas atom toward the sclid, then %xnvg = E, The
formula (9) is of the form

w
m

-

o]

o e-E/kT iE
n(w) / o ¢(E,w) (10)

where G-(E,w) is the average energy given by the gas atom to each of the
normal modes whose periodicity is w = 2xv, the integral over E is to
average over the various energies which the gas atom can have and

2
n(w) = 9 M dw/bi defines the distribution of frequencies among the
normal modes. N is the number of atoms in the crystal and

-6 -
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2 m2 %»2 2
6(E,w) = 1!_2, & (11)
3 NM sinh“(mwa, vz)

which is once again just one-half of the value obtained by Landau.

At this stage we may note in passing that if my & >> v(2kT/m), then
G and the integrand of 10 are very small for w > w and we may extend the

integral over w to infinity, as Landau did, without error. Physically, this
means that energy is transferred only to low-frequency modes because only low
frequencies appear significantly in the harmonic enalysis of the force
exerted by the gas atom on the lattice wher the gas atom has a small kinetio
energy. This holds approximately for low temperatures. If the temperature
is too low however, the approximation px >> 1 breaks down, which means that
even the motion of the gas atom is significantly quentised. 1In all of this
the attractive force between lattice and gas atoms has been omitted.

A more interesting regime for our present purpose is that of high
temperature, when the approximation w8 << V(2xT/m) is appropriate. It is

then easily shown that the integrand in 10 is only significant when ﬂwa/vz

is small, so that the sinh function may be replaced by its argument. The
result, from (11), is

a = 5% (12)

showing that in this limit every mode receives an equal share of energy
(after the implied averaging over the angles 6 between the direction of
motion of the ges atom and the direction of motion of the lattice atom
engendered by the various normal modes of approximately the same frequency).
This is becausc the force exerted by the gas atom on the lattice is now
essentially impulsive, contributing equal amplitudes for its harmonic com-
ponents at all frequencies, and the "effective mass" for each normal mode
oscillator is 3 NM, The factor 3 arises because the average of co0s20 for
the three normal modes (2 transvorse and 1 longitudinal) associated with
each possible wave-number vector is 1/3. The total number of vibrational
modes is nearly 3N and NM is the total mass of the crystel. Since the ga&/
solid interaction becomes impulsive at high gas atom energies, only the
target lattice atom plays any role in the energy transfer, provided m < M
80 that only one collision gccurs. Thus classically one would expect in
this limit o = 4 mM/(m + M), The result (12) is the approximation to this
for m << M, which is to be expected since a was assumed small in both the
Landau and the Devonshire theories.

It is nevertheless surprising at first sight that the first-order
wave-mechanical perturbation theory should give essentially the correct
answer for this 'classical' limit of high cnergies. At the same time the
classical theory of Landau gives a = 8 m/M, which is obviously wrong. It
should be noted also that while (12) is only correct if a is small, never-
theless at high temperatures the exchange of many phonons is predicted,
which contradicts the argument forcigly made by Zenerh, and apparently
accepted by Devonshire' and Strachan”, that only one normal mode can change
its quantum number and that by only *1 because of the harmonic oscillator
selection rules. It can be shown, with the expense of considerable manipu-
lation, that the limiting form (412) for the Devonshire theory remains true

-7 =
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in principle even when the attractive potential in (8) is retained. This
is to be expected physically since at sufficiently great thermal energies
(xT), the well-depth D will become negligible in comparison. For a well=-
depth of several kilocals/mole or more, the high~temporature limit is
experimentally unattainable as the solid will melt or vapouriso. It is

of interest, though, for the consideration of the impact of fast molecules
upon cold surfaces, such as happens when an artificial earth satellite
collides with molecules of the upper atmosphere. Numerical caloulations
of a from equation (4) are presented in Fig.1.

It will now be shown that Devonshire's integration over modes is
correct, not an approximation, at high temperatures, and that given the
integration, the first-order perturbation theory should give the correct
classical result in this regime, as it in fact does. The following
argument is limited to high temperatures by the proviso that the gas atom
may be replaced by a time-dependent force on the target lattice atom and
that the force should be unrelated in phase to any particular lattice
vibrations and independent of any transitions caused in the lattice. This
implies that o is small and that kT >> nwmax.

Consider a crystel comprising N point-mass atoms interlinked by
perfect Hooke's-law springs. For convenience let the crystal be attached
by other springs to a rigid support in such a way that it cannot rotate
or translate indefinitely. All the 3N normal modes of the system will
then be vibrations at non-zero periodicities w, where 1 € r € 3N. We mey

define a symmetrical mass-matrix, which in our case will be M times the
unit matrix of order 3N and will be denoted by M. Whether M denotes the
scalar or the matrix can be judged from the context in what follows. A
symmetrical stiffness matrix S may also be formed and if X is the vector
of the 3N displacements of the N atoms from their equilibrium positions,
the equations of motion of the crystal under no external forces may be
written

M+SX = 0 . (13)

Consideration of this shows that the eigenvalues of M‘1S are wi,

which may be formed into a diagonal matrix W. The corresponding eigen-
vectors moy be considered the columns (known as modal columns) T.,of a

matrix T. The linear transformation X = T introduces the vector Q of
normal coordinates, M* = T'MT is the diagonal matrix of normal mode

effective masses (chosen so that the kinetic energy % X'MX becomes % Q'M‘d
in the new coordinates), and the equations of motion become

MG + MR = O . (14)

The columns T.r of T are so far arbitrary to the extent of a multi-

plicative constant. These constants may be chosen so as to make M* the
unit matrix if desired.

The introduction of a vector F(t) of time~-dependent forces, which
must be independent of the positions of the atoms, on the right-hand side
of equation (13) gives:
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F(t) (15)

MX + SX

r(t) . (16)

M*Q + MAWQ

A point to be made immediately is that the last equation comprises 3N
completely independent equations, one for each of the components Q. of Q,

since the matrices M* and W are diagonal; each is an equation for the motion
of single oscillator with an external force applied. This statement applies
equally to the quantum mechanical formulation arnd, provided the initial
phases of the various normal mode oscillators bear no particular relation to
each other or to the timing of the applied force, it follows that the normal
modes absorb energy from the applied force independently. In other words,
the probability that one of the normal modes changes its quantum number from
n to n; is independent of any transition that any other normal mode may

make. This directly contradicts the statements by Zener and others, arising
from the use of first-order perturbation methods, that a guantum-mechanical
selection rule operates so that only one normal mode may change its quantum
number, and that by *1.

It is also interesting to note? that the average energy uptake by a
quantum oscillator of random initial phase (i.e. definite energy) is the
same as for a classical oscillator, and is independent of the initial energy.
Thus in the regime considered, i.e. when the gas atom may be replaced by e
force varying in time but independent of the position of the target lattice
atom, o must be the same whether calculated classically or by quantum
mechanics. This is true both for multiphonon energy transfer and for con-
ditions when first order perturbation theory is valid. Obviously however,
hv must be considerably less than kT for the interaction force to be a given
function of time, i.e. independent of whether or not a transition occurs.
Similarly, a must be small, but this is a limitation of both types of theory,
and does not imply that multiphonon transfers do not occur.

So far in this section arguments have been given to show that, at least
for high temperatures, the integration over normal modes in Devonshire's
theory is the correct procedure and not an approximation as previously assumed.
As Strachan has pointed out in some detail, the probability of a single mode
exchanging more than one phonon is very small because the exchanged phonons
are shared among 3N modes, where N is a large number. It follows that first
order perturbation theory should give correct answers even at high temperatures
for the individual transition probabilities. This regime of high temperature,
low a, will now be considered in more detail.

Equation (16) may be written as a set of eguations:
M* Y+ M¥w2 q = £ () (17)
r r r r T r

where fr(t) is the r'th component of T'F(t). Let n_ be the initial quantum
number (at t = -o) of the r'th mode and n; the final gquantum number

(at t = o) o Goldman? et al have given formulee for the transition proba-
bilities P(nr, n;) of a system described by equation (17), and it may easily

be shown from their work that
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P(n, n) = [lexp(ik )] ‘
rr
where
00 2 5
2 : = f)
k, = o / fr(t) exp(iwrt) at| /n = erI‘r(wr)l h 4
oo
and
(=]
lexp(t, 3], g = [ V2 (a) expli, @) v, (o) 2,
rr r r -
=00
ees (18)

Here \yn is the nz"th normalised harmonic oscillator eigenfunction.
r
Returning to the complete system, we may denote by P(n,n') the probability
that the vector n of the n, will change to a vector n', and since the

[}x ik qrﬂ |
r
[:exp (Zikr qr)] o = -/wllr;, exp ( Z\ ik q )y da

¥, = 2‘%,(%)’ dg = Mdaq ;r=1(1)3N .

individual probabilities are independent,

2
- "y -
P(n,n') = I;I.P(nr’ nr)

"

r

.ee (19)

As mentioned above, owing to the great number of modes, the
individual transition probabilities are all very small (f'or non=-zero
energy exchange) though their total may be large. In other words kr qr

is small but ) k_ q_ may be large. f'r(t) in equation (17) is small

r

because it is a component of T'F(t) and in our problem, only one comgponent
of F(t) is non-zero; we are trying to excite a vibration involving all the
atoms of the crystal by pushing on only one of them. The first order
perturbation expression for P(nr, n;) may be obtained by expanding the

expenential in equation (18),

- 10 =
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k
[1+ 1 e 9 nr’nr'-

]
P(nr, nr)

M

2
5 ——-————,Fr(wr)l 8 (n_+1) 8 (20)
+ > [n ] + \n_+ L. J ’
nn) 2Mr ﬁADr r nr,nr+1 r n_,n; 1

1§

which exhibits the well known selection rule for firsteorder perturbaticns
in that n, can chenge at most by #1. It may also be noted that the average

energy absorbed by the r'th oscillator is Jjust lFr(wr)lz/zm;, the classical

value, This has been noted?0s?? in other contexts. The interesting fact is
that the first order result for energy transfer is valid to all orders as it
coincides with the classicel result and therefore with the result of the
exact quantum theory. For large energy transfers, the exact theory would
give a widespread spectrum of final states whereas the first-order theory
would give a large (greater than unity!) probability of exciting the two
states adjacent to the initial state; the energy transfer would nevertheless
be the same. Thus for the system under discussion, first order perturbation
calculations of energy transfer are correct even when multiphonon transitions
of a single oscillator occur, We do not need this result, but we are concerned
about the probability of several oscillators each transferring a single
quantum,

The average overall energy transfer AE is

AE = Z P(n,n') Z(n"” - nr) no Z P(n,n') 2 Er(nr,n;) .

r n'

eee (21)

With the use of (19) this can be rewritten

oE = >: [g P<nr,n;>][znr(nr,n;)] .

n!

Y
+ \ - ] ]
Remembering that }_ P(nr,nr) = 1 and that P(nr,nr) and Er(nr’nr) are

nt
r

independent of all components of n' save n;, this can be reduced to

AE=>‘
T

which is equivalent to Devonshire's integration over modes and shows (if it
needed demonstration) that energy transfer to one mode is independent of
transfer to other modes. It remains to see how first order perturbation

t

P(n,m!) B (n,nt) (22)

’!b°

- 41 =
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theory can lead to Zener's conclusion that the modes are not independent:
First order perturbation theory is equivalent to reteining only the terms

linear in kr in the expansion of exp < Z ikr qr>, and far more disastrously,

r
neglecting all products such as kr ks' One then obtainsg from (21) and (19):

R ik
Z [ 2.: r qr]nn'
Ir

nt

2 —

E (n_,n'
>‘r(r’r
e
r

AE

1l

Z‘ >_.‘ kf' [qr]fm' Er(n,n')
oo

which involves the sum of terms such as occur in equation (20), but each
multiplied by .tm)r or zero., From this formulation, Zener's conclusions

follow, but the 'selection rules' are now seen to be a defect of the
first~order approximation and not a reality,

In view of the foregoing we may deduce that on the questions so far
covered the Devonshire formula should give correct accommodation coef-
Ticients a for both large and smell energy transfers, provided a is itself
small; within this restriction it agrees with classical theory for high
temperatures. The problem remains of the incorrect factor of 2 in Landau's
working. To show the reason for this it is necessary to consider the
normal modes of the solid in more detail. For this particular purpose,
classical one-dimensional models suffice. The model of a linear chain
of similar atoms with nearest-neighbour Hooke's law interaction is con-
sidered in Appendix 1, also the model of a linear continuum (rod) with a
'Debye’ cutoff of normal mode frequencies. In the second model the end
of the rod always vibrates st maximum amplitude no matter which normal
mode is excited, and the equivalent mass of the normal mode, determined
from the energy of the whole rod for unit amplitude displacement of the
end, is always Jjust one half of the total mass of the rod. In the model
with discrete masses the amplitude of the end atom for a given energy in
the chain decreases with increasing freguency of the normal mode and the
equivalent mass of the n'th mode oscillator is NM/Z cosz(m‘/2N), where NM
is the total mass and N the total number of atoms in the chain. Since the
energy transferred to a mode is inversely proportional to the effective
mass it is obvious that excitation of the higher frequency modes is not so
easy for the chain of discrete masses as for the continuum. When an
impulse is delivered to the end atom all modes receive an equal impulse
and the average value of cos2(P%/2N) for n = O(1)N-1 is 1/2, so that the
chain ebsorbs only half the energy taken up by the continuum. This is the
source of Landau's mistake. Devonshire actually treats the surface atom
as though it were in the middle of an infinite lattice and takes in effect
NM as the mass of every mode. This gives the right answer for the impul-
sive force, but for forces distributed over a time interval it will not
glve the true preference for excitation of lower frequency modes, It will
be shown later that one-dimensional models give erroncous results for
accommodation coefficients, but they do serve to illustrate the above
difference between lattices and continua,

- 12 -
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4 SIMPLE CONTINUUM MODELS

A one-dimensional (1D) continuum rod has been considered in Appendix 1
from the point of view of its normal modes. It is easy to show that in a
perfectly elastic 41D continuum with no dispersion or "Debye cuttoff", any
energy supplied at one end is radiated as an unchanging stress wave down
the rod; any work done by a force on the end of the rod is lost forever te
the agency responsible for the force if the rod is infinitely long.
Introduction of the dispersion proper to a lattice of like atoms connected
with Hooke's law springs to nearest neighbours only does not greatly alter
the situation. The 1D infinite chain has been considered in some detail by
Zwanzig, and is found to give large accommodation coefficients, as expected,
unless the impinging atom is much lighter than the lattice atom. In the
latter event only the 'target' atom in the chain plays any significant role
and Bauld's factor applies since the collision is over before the target
atom has moved sufficiently to affect the rest of the lattice.

In this section a very naive 3D continuum model will be used to high-
light the inadequacy of 41D models, and a more sophisticated 3D model,
available from the work of Miller and Pursey12:1§ on waves in the earth's
crust, will show the importance of surface waves.

Firstly let us consider a (non—physical) 3D continuum in which the
free surface is the plane & = ™/2 in spherical polars end the medium is in
the region O < 6 < ®/2, Suppose that the displacement s of the medium
parallel to & = O can be completely decoupled from any displacement in any
other direction and that it obeys the wave equation

A vi = ps (23)
where A is an elastic modulus and p the density. If we do not concern
ourselves with the boundary conditions at 6 = T/2, hemispherical scalar
waves are possible with no dispersion so that

r r-r >
S(r,t) = fs<r°, £ — °>, A VA (21)

Also in this model the stress transmitted across unit area of the

hemisphere r = r, is A\ %% » 8iving a total force F between the regions on

1
either side of the hemisphere, and

F o= 2xri(s/or), - N . (25)

We now consider that the force between an oncoming body of mass m and
the continuum is applied tc the continuum over the hemisphere r = e

Making use of (24) and (25) we have

[o]

mi(r ) = F(ro) = =27 [}i é(ro)/c +r, S(ro{} . (26)

- 13 -



Technical Note No. Met. Phys.3.8

In the square brackets on the right hand side of (26), the first
term is & demping term arising because any disturbance of the medium at
r = r causes & wave to be radiated. This first term appears in the
equatgons for the 1D model, but in the latter there is no counterpart to
the second term. The second term represents a conservative restoring
force connected with the steady-state solution S(r) = (rd/r) S(ro) of

(2&). Yhe 1D continuum has no steady-state solution. Thus the 3D con-
tinuum behaves mechanically, for a force applied et r = T, like & spring

of force constant 21:N/ro (conservative part) in parallel with a dashpoi
(wave=-making resistance). The differential equation (26) for s(ro) is

the well-known equation for damped oscillations, and may be solved with
initial conditions 3 = Vg 8 = 0, to find Vo the final velocity of the

oncoming mass at the time when §(ro) returns to zero. Putting
a=1- vf/vi then gives for this model

a = 1 = exp(~46cot 8) (27)

where tan 0 = -Jl: <2m/1cprz> - 1:] . We may roughly identify pro3 with

the mass M of the lattice atom, and it is then clear that this model
suggests the possibility of very poor accommodation when n/M is large.

The physical reason for this is that a heavy oncoming atom distorts the
solid relatively slowly, losing very little energy to lattice waves,
being finally brought to rest and then catapulted from the solid by the
conservative or "steady state" forces set up by the distortion. This
possibility does not exist in 1D because there is no "steady state" force.
Also it is not comprehended in the perturbation theories of Devonshire
and of Landau, which predict for m >> M that a > 1 because the perturba-
tion method is not valid in this regime. Zwanzig, in his consideration
of a 1D chain also suggests that a = 1 for m > M because then the oncoming
atom is still moving into the chain after its first collision and will
therefore suffeer multiple collisiors with the target atom in the chain.
There is a general consensus that multiple collisions lead to perfect
accommodation. This is true of Zwanzig's model, but the simple 3D model
outlined above suggests that it is not true for a 3D lattice. This
expectation has been justified in the work!# of F.0. Goodman on classical
lattice dynamics.

The above discussion shows the inadequacy of 1D models. We now turn
to the shortcomings of existing 3D models for accommodation coefficient
theories. Miller and Pursey'< have considered an isotrcpic elastic con-
tinuum bounded by a flat stress-free surface except that over a disc of
radius a in this surface a uniform pressure is applied with sinusoidal
time-dependence. They have solved the problem using integral transforms
for a general value of Poisson's ratio and for the mean displacement over
the disc in the direction normal to the surface, ﬁz’ they obtain

5 . 2
z k, C

) 2 2
u?p [ V"~ 1) 37(E ak,) &
1

28
EF, ) (26)

where k1 is the wave number for the longitudinal waves generated in the

longitudinal
medium, p is the ratio of wave speeds transverse ' p is the pressure

applied, Ch# is the shear modulus and Fo is a function of u and &:
-1 -
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R = e - M- (29)

The path of integration is to be taken above the singularities on the
real axis, and the principal values of the square roots must be used. This
last condition means that F, has only one zero which gives a pole in the
integrand at § = Eo’ where Eo > u on the real axis, It is the residue at

this pole which gives the effect of surface waves.
Miller and Pursey, from equation (28), have made numerical estimations

of the mechanical impedance presented by the continuum at the disc source.
Some of the results are reproduced in Table 1.

Putting F = nri Py, 8 = dws, A = pcz, r, = ak ard w/k = C in ,

equation (20), it is found that the impedance is predicted by the naive 3D
model to be 2 pc(1 -i/a), 1In Table 1, ZR is the radiative impedeance and VL

the velocity of longitudinal waves in Miller and Pursey's model. o is
Poisson's ratio.

TABLE 1
& Zefe
o= 1/k oc=1/3
u=v3 p=2

0.05| 0.66 - 10.46 i| 0.64 - 8.82 i
0.10| 0.66 - 5.22 1 | 0.64 = 439 i
0.20| 0.66 = 2,58 i | 0.64 = 2,16 i
0,30 0.67 - 1.68 i | 0.65 - 1.40 1
0.40] 0.67 = 4.22 1 | 0.65 = 1.01 1
0.50| 0.68 -~ 0,94 1 | 0.66 = 0.76 i

It can be seen that for small a, i.e. when the radius of the disc is
small compared to the wavelength of the elastic waves, the impedance com-
rises a constant resistive (wave making) part together with e reactive
?capacitative) part proportional to 1/a as suggested by the naive model.
The reactive part makes possible a steady state with a non-zero applied
pressure, In the same limit of small a, a lattice should become comparable
to the continuum.

In another paper Miller and PUrsey12 find what proportions of the energy
radiated are to be found fer from the source in the form of longitudinal,
transverse, and surface waves. The proportions for o = 1/#, i.0. p = Y3,
are 0.333, 1.246, and 3.257 respectively, showing that two thirds of the
energy is lost in the surface wave. This suggests that existing treatments
of the thermal accommodation coefficient problem may be in error by a factor
of 3 or more, since energy loss to surface waves is never considered.
Consideration of (29) shows that as p tends to unity the zero of FO(E) tends

to infinity and the pole of the integrand in (28) contributes nothing to ﬁz;

- 15 -
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correspondingly, as the ratio of longitudinal to transverse wave speeds
tends to unity, the surface wave disappears. This limit is quite non=-
physicel, requiring an infinite Poisson's ratio, but serves to show that
surface waves cannot be expected in & model which assumes equal transverse
and longitudinal wave speeds. This means that an adequate lattice model
which is also amenable to mathematical treatment is difficult to find.

5 CONCLUSION

It is shown sbove that when the energy of the gas atoms impinging
on a s0lid surface is sufficiently high, Devonshire's formula for
accommodation coefficient reduces to a = 4 m/M, where m and M are the
masses of gas atoms and lattice atoms respectively., This is to be
rogarded as an approximation to the collisional energy transfer factor
4 uM/(m + M)?, valid for m << M, and shows that Devonshire's theory can
successfully predict many-phonon transitions in the lattice. This
unexpected success of the first order quantum mechanical perturbation
theory is due firstly to the fact that the quantum mechanical oscillator
behaves classically with respect to absorption of energy from a perturbing
force and secondly to the integration over normal modes which assumes com~-
plete independence of the modes in the absorption of energy. While the
modes are not independent in the first order perturbation theory, they
would become so in a treatment valid for multiphonon transitions.
Devonshire's formula is concerned with those gas atoms only which
immediately leave the solid surface after impact; for correlation with
experimental results, some account should be taken of those gas atoms
which remain adsorbed on the solid after the impact.

In the same limit of high gas atom energies, it is shown that
Landau's model gives a = 8 m/M and this obviously incorrect result arises
because his continuum model with a force applied at the free surface does
not behave at high frequencies like a lattice. It would behave more
correctly if the forces could be applied half a lattice spacing in from
the continuum surface, provided the effect of the forces is calculated
by Landau's perturbation method. Devonshire used a lattice model but
considered the interaction of the gas atom with an atom in the bulk of the
lattice instead of with an atom at a free surface. Thus although he
obtains the correct result for the high energy gas atom (impulsive force)
situation, at lower energies his formula will not give the correct bias
towards exciting low-frequency modes.

It is also shown above that one-dimensional models are not adequate
for the study of accommodation coefficients. A three dimensional solid,
in contrast to a one-dimensional solid, can behave conservatively with
respect to a force applied over a finite region of its free surface, pro-
vided the force changes sufficiently slowly. This leads to the suggestion
that there should be poor accommodation when a very heavy gas atom impinges
on a lattice of light atoms. All the existing theories, save thatit
developed by Dr. Goodman at this establishment, predict very good accom-
modation in this situation on the grounds that the gas atom makes more
than one collision with the target atoms in the lattice, which argument
ignores the "resilience" of the three dimensional lattice. Devonshire and
Landau both predict high a because the energy transfer is treated as a
perturbation of the situation of a gas atom impinging upon a rigidly fixed
target lattice atom. It would be more realistic to start with a gas atom
impinging on a perfectly restitutive lattice as a gzero order solution for
this particular case of large mass-ratio.

Finally, it is shown that surface waves are likely to play an

important part in gas~solid energy exchange, perhaps to the extent of
increasing the energy transfer by a factor of three or more.

- 16 -
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The author is indebted to Dr. R.O.Davies and tc Mr. L.G.Carpenter for

several discussions on the theory of accommodation coefficients, and for
improvements to the text of this paper.

LIST OF SYMBOLS

congtant, equation (2)

normelising factor for s'th normal coordinate
see equation (5)

scale length for exponential repulsion in Landau's theory
equetion (9), (10), (11). r /k in Table 1

coefficients, equation (13)

speed of elastic wave, equation (418)

elastic constant of solid

energy "well-depth", equation (3)

sbbreviation for "one-dimensional"

see equation {5)

initial kinetic energy of gas molecule, equation )

energy in s'th mode or energy transferred to s'th mode

force or vector of forces applied to solid, equation (19)
fourier component of driving force f(t), equation (16)

see equation (23)

force applied to oscillator
see equation (10)

Planck's ccnstant

h/2x

Impulse

Vi

Boltzmann's constant, or |F|/A/Zmhw in equation (18) et seq., or
wave-number or bond~stretching force constant in Appendix 1

wave number for longitudinal waves
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LIST OF SYMBOLS (Contd)

length of rod (Appendix 1)

mass of solid atom, total mass of solid in Appendix 1
effective mass of normal mode oscillator or the matrix of these
mass of gas atom. Mass of solid atom in Appendix 1

number of atoms in solid lattice

frequency distribution of normal modes, equation (10)
transition probability

pressure

vector of normal coordinates, equation (A1-3), equation (14)
radisl coordinate in spherical polars

stiffness matrix

displacement, equation (17); normal mode number

temperature

components of matrix T in equation (A1-3) and equation (16)

time

coordinate of gas atom

mean displacement, equation (22)
potential energy

speed of longitudinal elastic waves in solid

gas atom velocity
vector of lattice atom displacements, equation (a1-3)
distance of gas atom from surface; displacement of target atom

radiative impedance

coordinate of target lattice atom

accommodation coefficient. Equation (1)
gamma function
Debye temperature; angle between elastic wavefront and surface;

azimuthal coordinate in spherical polars. See also equation (21)
and Appendix 1.
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LIST OF SYMBOLS (Contd)

factor determining width of potential well, equation (3)
elastic modulus, equation (17)

see equation (5), also ratio of elastic wave speeds in Table 1
normal mode frequency

Debye's limiting frequency

density, equation (17)
Poisson's ratio (Table 1)

harmonic oscillator wave-function
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APPENDIX 1

SIMPLE ONE-DIMENSIONAL MODELS

Consider a linear chain of N atoms each of mass m and connected to
its nearest neighbours by a spring of force constant k. Let the atoms be
numbered O to N-1, and let x, be the displacement from its initial rest

position of the r'th atom. The equation of motion of the r'th atom

k(x_, -2 X, + xr_1) = m¥ (a1-1)

T+1 r

can be satisfied by x = x _ sin wt cos(rf +¢) provided w2 = (2k/m)(1 - cos 6).

The equations of motion of the atoms O and N-1 are also satisfied if ¢ = 6/2
and 6 = sx/N where s is an integer. The displacement Trs of the r'th atom

when the s'th normal coordinate only is made unity is thus, with s = O(1)N~1,

- 1\ sz -
T., = A cos (r + 2) i (a1-2)

It is convenient to give A: the value 2/N for s #+ 0 and 1/N for s = O,
since then the matrix I'Trs'l is the inverse of its transpose as may readily

be verified. The columns of this matrix are often referred to as 'modal
columns's If X = {xr] is the vector of atom displacements and Q is the

vector of normal coordinates and T is written for ]lTrsll, we have
X = M . (a1-3)
The equations of motion (A1-1) may be expressed in matrix form
X+BX = 0

whica may be generalised, if F(t) is a vector of forces applied to the
atoms, to

X4+BX = %F (At-4)
or
V+mrq = T‘1<% F) . (a1-5)

The matrix TBT-1 is diagonal with the s'th element equal to
2
wg = (2x/m ) (1 - cos %%). If in particular a force is applied to the zero'th

atom only then the equations for the normal coordinates Qs are all of the
form

-2 -
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3 2 LAY -
Q + @, Q = As<cos ?ﬁ) P(+)/m (a1-6)

and if F(t) is an impulse I applied at t = O to a chain at rest then

: AT ., e
Qs(t=0) = ~X-cos 5o . (a1-7)

It can be shown from (A1=3) that the energy associated with the s'th
mode is %m Q:(t =0) for s # 0 and m Q(?;(t = 0) for s = O. In any case the
energy in the s'th mode after application of the impulse is

2
= Lo cosl 3% -
E, = Ifcos . (a1-8)

The total energy in the chain is of course 12/2m, the energy delivered
to the zero'th atom. The response to a force distributed in time may be
obtained by representing the force as a series of delta-functions of time.
The important point however is that the force component on the s'th mode
is proportional to cos(8%/2N) and therefore the higher frequency normal
modes are not easily excited by a force acting on the end atom of a chain.
If the force had been applied to the r'th atom where r is fairly large
then the factor cos(8%/2N) would have been replaced by cos (r + 1/2) sn/N.
This new factor fluctuates rapidly as s is altered so that there would now
be no systematic difference between the ease of excitation of low and high
frequency modes.

ONE DIMENSIONAL CONTINUUM MODEL

Consider a thin rod of length L, with position along it measured by
the coordinate x, O € x € L. If u(x) is the longitudinal displacement of
the element normally at x then the displacement associated with the s'th
normal mode is

SRX
us(x) = A, sinwt cos <1 (a1-9)

and the associated energy is MAi wi/h(s # 0), whers M is the total mass of
the rod. The corresponding amplitude of motion of the end at x = 0, is As’

so that for a force applied at x = O, the normal mode behaves like an
oscillator of mass M/2. This result is true of a continuum, but if one
attempts to approximate to a lattice by a "Debye" cutoff, i.e. by con-
sidering only the first N modes (only unidirectional motion is considered),
then an error is made. In particular an impulse I would deliver an energy
I%/M to each mode, or a total of I2/m to the whole rod, which is twice the
correct energy transfer., Perhaps the simplest way to resolve the dis-
crepancy is to consider that when the continuum is to represent a lattice,
the force applied to a surface atom must be applied to the continuum not at
x = 0 but at x = L/2N, 1,6, one-half of a "lattice spacing" in from the end.
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